Descent and peak polynomials

Bruce Sagan Michigan State University www.math.msu.edu/~sagan

October 30, 2016

Introduction

Roots

Coefficients

Conjectures and other work

The cast of characters

SB = Sara BilleyKB = Krzysztof Burdzy

FCV = Francis Castro-Velez

ADL = Alexander Diaz-Lopez

MF = Matthew FahrbachPH = Pamela Harris

El = Erik Insko

MO = Mohamed Omar

RO = Rosa Orellana

JP = José Pastrana DPL = Darleen Perez-Lavin

BES = Bruce E SaganAT = Alan Talmage

RZ = Rita Zevallos

$$[n] := \{1,2,\ldots,n\},$$
 $\mathfrak{S}_n := \operatorname{symmetric} \operatorname{group} \operatorname{on} [n],$ $I_0 := I \cup \{0\} \operatorname{for} I \operatorname{a} \operatorname{finite} \operatorname{set} \operatorname{of} \operatorname{positive} \operatorname{integers},$ $m := \max I_0.$ Permutation $\pi = \pi_1 \ldots \pi_n \in \mathfrak{S}_n$ has $\operatorname{descent} \operatorname{set}$
$$\operatorname{Des} \pi = \{i \mid \pi_i > \pi_{i+1}\} \subseteq [n-1].$$
 Given I and $n > m$, define
$$D(I;n) = \{\pi \in \mathfrak{S}_n \mid \operatorname{Des} \pi = I\} \quad \operatorname{and} \quad d(I;n) = \#D(I;n).$$
 Ex. $D(\{1,2\};5) = \{32145,42135,52134,43125,53124,54123\}.$ Theorem (MacMahon, 1916) We have $d(I;n)$ is a polynomial in n , called the descent polynomial. Proof. Let $I = \{i < j < \ldots\}$. Use inclusion-exclusion on $\pi \in \mathfrak{S}_n$ of the form $\pi = \pi_1 < \cdots < \pi_i \ \pi_{i+1} < \cdots < \pi_j \ \cdots$. \square Corollary (ADL-PH-EI-BES, 2016) If $I \neq \emptyset$ and $I^- = I - \{m\}$ then $d(I;n) = \binom{n}{m} d(I^-;m) - d(I^-;n)$. So $\operatorname{deg} d(I;n) = m$.

$$[\ell, n] := [\ell, \ell + 1, \ldots, n].$$

Permutation $\pi = \pi_1 \dots \pi_n \in \mathfrak{S}_n$ has *peak set*

Peak
$$\pi = \{i \mid \pi_{i-1} < \pi_i > \pi_{i+1}\} \subseteq [2, n-1].$$

Note that if Peak $\pi = I$ then I can not contain two consecutive integers and call such I admissible. If n > m then define

$$P(I; n) = \{ \pi \in \mathfrak{S}_n \mid \operatorname{Peak} \pi = I \}.$$

Ex.
$$P({2}; 4) = {1324, 1423, 1432, 2314, 2413, 2431, 3412, 3421}.$$

Theorem (SB-KB-BES, 2013)

If $I \neq \emptyset$ is admissible then $\#P(I; n) = p(I; n)2^{n-\#I-1}$ where p(I; n) is a poynomial in n of degree m-1 called the peak polynomial.

Proof. Use inclusion-exclusion on $\pi \in \mathfrak{S}_n$ such that

$$\operatorname{Peak}(\pi_1 \dots \pi_{m-1}) = I - \{m\} \text{ and } \operatorname{Peak}(\pi_m \dots \pi_n) = \emptyset$$

and then induct.

The peak polynomial is not always real rooted. But it does have some interesting integral roots.

Let
$$I = \{i_1 < \cdots < i_s\}.$$

(i) If $i_{r+1} - i_r$ is odd for some r then

$$p(I; 0) = p(I; 1) = \cdots = p(I; i_r) = 0.$$

(ii) If
$$i \in I$$
 then

$$p(I;i)=0.$$

In some ways the descent polynomial behaves similarly.

Theorem (ADL-PH-EI-BES, 2016)

If $i \in I$ then

$$d(I;i)=0.$$

Proof.

$$d(I;n) = \binom{n}{m}d(I^-;m) - d(I^-;n)$$

where $I^- = I - \{m\}$. If i < m then, using induction,

$$d(I;i) = \binom{i}{m}d(I^-;m) - d(I^-;i) = 0 \cdot d(I^-;m) - 0 = 0.$$

If i = m then

$$d(I; m) = {m \choose m} d(I^-; m) - d(I^-; m) = 0$$

as desired.

Ex. Let $I = \{1, 2\}$. Then

$$D(I; n) = \{\pi = \pi_1 > \pi_2 > \pi_3 < \pi_4 < \cdots < \pi_n\}.$$

So $\pi_3 = 1$. And picking any two elements of [2, n] for π_1, π_2 determines π . Thus

$$d(I; n) = {n-1 \choose 2} = \frac{n^2 - 3n + 2}{2}$$

has negative, nonintegral coefficients.

The next peak polynomial result was conjectured by SB-KB-BES.

Theorem (ADL-PH-EI-MO, 2016)

The coefficients in the expansion

$$p(I; n) = \sum_{k>0} a_k(I) \binom{n-m}{k}$$

are nonnegative integers.

Proof. Use a new recursion for p(I; n) based on where n + 1 can be placed in passing from \mathfrak{S}_n to \mathfrak{S}_{n+1} .

For descent polynomials, these coefficients have a combinatorial interpretation.

Theorem (ADL-PH-EI-BES, 2016)

Define $b_k(I)$ as the coefficients in the expansion

$$d(I;n) = \sum_{k\geq 0} b_k(I) \binom{n-m}{k}.$$

Then $b_k(I)$ is the number of $\pi \in D(I; n)$ with

$$\{\pi_1 \dots, \pi_m\} \cap [m+1, n] = [m+1, m+k].$$
 (1)

Proof. Partition D(I; n) into subsets $D_k(I; n)$ which contain those permutations in D(I; n) such that $|\{\pi_1 \dots, \pi_m\} \cap [m+1, n]| = k$. Then show

$$|D_k(I;n)| = b_k(I) \binom{n-m}{k}$$

where $b_k(I)$ is given by equation (1).

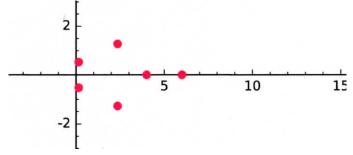
More on roots (including complex).

Conjecture (SB-MF-AT for p, ADL-PH-EI-BES for d, 2016) If d(I;z) = 0, or if I is admissible and p(I;z) = 0 then

$$|z| \leq m$$
 and $\Re(z) \geq -3$.

For d(I; z) this conjecture has been checked for all I with $m \le 12$.

Ex. Roots of d(I; z) for $I = \{4, 6\}$.



More on coefficients.

Problem

Find a combinatorial interpretation of the $a_k(I)$ in

$$p(I;n) = \sum_{k>0} a_k(I) \binom{n-m}{k}.$$

Sequence a_0, a_1, \ldots is *log concave* if, for all k, $a_{k-1}a_{k+1} \leq a_k^2$.

Conjecture (ADL-PH-EI-BES, 2016)

The sequence $b_0(I), b_1(I), \ldots$ is log concave where the $b_k(I)$ are defined by

$$d(I;n) = \sum_{l>0} b_k(I) \binom{n-m}{k}.$$

Note that the stronger condition of the generating function for $b_0(I), b_1(I), \ldots$ being real rooted does not always hold.

Proposition (ADL-PH-EI-BES, 2016) If $I = [\ell, m]$ then $b_0(I), b_1(I), \ldots$ is log concave.

Other Coxeter groups.

The symmetric group is the Coxeter group of type A. There are analogous results for types B and D which have been demonstrated by FCV-ADL-RO-JP-RZ (2013) and ADL-PH-EI-DPL (2016) for p(I;n), and by ADL-PH-EI-BES (2016) for d(I;n). For example, we view $\beta=\beta_1\ldots\beta_n\in B_n$ as a signed permutation and extend β to $\beta=\beta_0\beta_1\ldots\beta_n$ where $\beta_0=0$. Translating the usual definition of descent set for a Coxeter system into this setting gives

$$Des \beta = \{i \ge 0 \mid \beta_i > \beta_{i+1}\}.$$

Given a finite set I of nonnegative integers, define

$$D_B(I; n) = \{\beta \in B_n \mid \text{Des } \beta = I\}$$
 and $d_B(I; n) = \#D_B(I; n)$.

Using Inclusion-Exclusion, one obtains the following.

Proposition (ADL-PH-EI-BES, 2016) If $I \neq \emptyset$ and $I^- = I - \{m\}$ then

$$d_B(I; n) = \binom{n}{m} 2^{n-m} d_B(I^-; m) - d_B(I^-; n).$$

THANKS FOR

LISTENING!